Nitration of tyrosine residues 368 and 345 in the beta-subunit elicits FoF1-ATPase activity loss.
نویسندگان
چکیده
Tyrosine nitration is a covalent post-translational protein modification associated with various diseases related to oxidative/nitrative stress. A role for nitration of tyrosine in protein inactivation has been proposed; however, few studies have established a direct link between this modification and loss of protein function. In the present study, we determined the effect of nitration of Tyr345 and Tyr368 in the beta-subunit of the F1-ATPase using site-directed mutagenesis. Nitration of the beta-subunit, achieved by using TNM (tetranitromethane), resulted in 66% ATPase activity loss. This treatment resulted in the modification of several asparagine, methionine and tyrosine residues. However, nitrated tyrosine and ATPase inactivation were decreased in reconstituted F1 with Y368F (54%), Y345F (28%) and Y345,368F (1%) beta-subunits, indicating a clear link between nitration at these positions and activity loss, regardless of the presence of other modifications. Kinetic studies indicated that an F1 with one nitrated tyrosine residue (Tyr345 or Tyr368) or two Tyr368 residues was sufficient to grant inactivation. Tyr368 was four times more reactive to nitration due to its lower pKa. Inactivation was attributed mainly to steric hindrance caused by adding a bulky residue more than the presence of a charged group or change in the phenolic pKa due to the introduction of a nitro group. Nitration at this residue would be more relevant under conditions of low nitrative stress. Conversely, at high nitrative stress conditions, both tyrosine residues would contribute equally to ATPase inactivation.
منابع مشابه
Nitration of specific tyrosines in FoF1 ATP synthase and activity loss in aging.
It has been reported that C-nitration of proteins occurs under nitrative/oxidative stress; however, its role in pathophysiological situations is not fully understood. In this study, we determined that nitration of Tyr(345) and Tyr(368) in the beta-subunit of the mitochondrial F(o)F(1)-ATPase is a major target for nitrative stress in rat liver under in vivo conditions. The chemical characteristi...
متن کاملAdenine nucleotide binding sites on beef heart F1 ATPase: photoaffinity labeling of beta-subunit Tyr-368 at a noncatalytic site and beta Tyr-345 at a catalytic site.
2-Azidoadenine [32P]nucleotide was bound specifically at catalytic or noncatalytic nucleotide binding sites on beef heart mitochondrial F1 ATPase. In both cases, photolysis resulted in nearly exclusive labeling of the beta subunit. The modified enzyme was digested with trypsin, and labeled peptides were purified by reversed-phase high-pressure liquid chromatography. Amino acid sequence analysis...
متن کاملATPaseTb2, a Unique Membrane-bound FoF1-ATPase Component, Is Essential in Bloodstream and Dyskinetoplastic Trypanosomes
In the infectious stage of Trypanosoma brucei, an important parasite of humans and livestock, the mitochondrial (mt) membrane potential (Δψm) is uniquely maintained by the ATP hydrolytic activity and subsequent proton pumping of the essential FoF1-ATPase. Intriguingly, this multiprotein complex contains several trypanosome-specific subunits of unknown function. Here, we demonstrate that one of ...
متن کاملAcetylcholinesterase: inhibition by tetranitromethane and arsenite. Binding of arsenite by tyrosine residues.
Tetranitromethane inhibits acetylcholinesterase with respect to the hydrolysis of both acetylthiocholine and indophenyl acetate. The loss of activity with indophenyl acetate, a poor substrate, is preceded by an increase in enzyme activity. Only 12 of the 21 tyrosine residues/monomer of enzyme are susceptible to nitration. Loss of activity with respect to indophenyl acetate occurs well after no ...
متن کاملThe reaction of tetranitromethane with pituitary, luteinizing and thyroid-stimulating hormones.
The reaction of tetranitromethane with the tyrosine residues of the pituitary glycoprotein hormones, luteinizing hormone (LH) and thyroid-stimulating hormone (TSH) has been compared. The total reaction products were inactive if sufficient reagent was used. Although polymer formation is a major reaction, nitrated LH monomer was obtained which was then separated into its a and /3 subunits and a f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 423 2 شماره
صفحات -
تاریخ انتشار 2009